Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-34731744

RESUMO

BACKGROUND: Coffee is one of the most frequently consumed beverages worldwide. Research on effects of coffee drinking has focused on caffeine; however, coffee contains myriad biochemicals that are chemically unrelated to caffeine, including 3,4-dihydroxyphenyl compounds (catechols) such as caffeic acid and dihydrocaffeic acid (DHCA). OBJECTIVE: This prospective within-subjects study examined effects of drinking caffeinated or decaffeinated coffee on plasma free (unconjugated) catechols measured by liquid chromatography with series electrochemical detection (LCED) after batch alumina extraction. To confirm coffee-related chromatographic peaks represented catechols, plasma was incubated with catechol-O-methyltransferase and S-adenosylmethionine before the alumina extraction; reductions in peak heights would identify catechols. METHODS: Ten healthy volunteers drank 2 cups each of caffeinated and decaffeinated coffee on separate days after fasting overnight. With subjects supine, blood was drawn through an intravenous catheter up to 240 min after coffee ingestion and the plasma assayed by alumina extraction followed by LCED. RESULTS: Within 15 min of drinking coffee of either type, >20 additional peaks were noted in chromatographs from the alumina eluates. Most of the coffee-related peaks corresponded to free catechols. Plasma levels of the catecholamines epinephrine and dopamine increased with both caffeinated and decaffeinated coffee. Levels of other endogenous catechols were unaffected. Plasma DHCA increased bi-phasically, in contrast with other coffee-related free catechols. INTERPRETATION: Drinking coffee-whether caffeinated or decaffeinated-results in the rapid appearance of numerous free catechols in the plasma. These might affect the disposition of circulating catecholamines. The bi-phasic increase in plasma DHCA is consistent with production by gut bacteria.


Assuntos
Cafeína/análise , Catecóis/sangue , Café/metabolismo , Adulto , Ácidos Cafeicos/sangue , Cafeína/metabolismo , Café/química , Feminino , Humanos , Masculino , Plasma/química , Estudos Prospectivos , Adulto Jovem
2.
J Pharmacol Exp Ther ; 379(3): 253-259, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34503991

RESUMO

The endogenous catecholamines dopamine (DA), norepinephrine (NE), and epinephrine (EPI) play key roles in neurobehavioral, cardiovascular, and metabolic processes; various clinical disorders; and effects of numerous drugs. Steps in intracellular catecholamine synthesis and metabolism were delineated long ago, but there remains a knowledge gap. Catecholamines are metabolized by two isoforms of monoamine oxidase (MAO), MAO-A and MAO-B, and although the anatomic localization of MAO-A and MAO-B and substrate specificities of enzyme inhibitors are well characterized, relative susceptibilities of the endogenous catecholamines to enzymatic oxidation by MAO-A and MAO-B have not been studied systematically. MAOs catalyze the conversion of catecholamines to catecholaldehydes-3,4-dihydroxyphenylacetaldehyde (DOPAL) from DA and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) from NE and EPI. In this study we exploited the technical ability to assay DOPAL and DOPEGAL simultaneously with the substrate catecholamines to compare DA, NE, and EPI in their metabolism by MAO-A and MAO-B. For both MAO isoforms, DA was the better substrate compared to NE or EPI, which were metabolized equally. Since catecholaminergic neurons express mainly MAO-A, the finding that MAO-A is more efficient than MAO-B in metabolizing endogenous catecholamines reinforces the view that the predominant route of intraneuronal enzymatic oxidation of catecholamines is via MAO-A. The results have implications for clinical neurochemistry, experimental therapeutics, and computational models of catecholaminergic neurodegeneration. For instance, the greater susceptibility of DA than the other catecholamines to both MAO isoforms can help explain relatively high concentrations of the deaminated DA metabolite 3,4-dihydroxyphenylacetic acid than of the NE metabolite 3,4-dihydroxyphenylglycol in human plasma and urine. SIGNIFICANCE STATEMENT: Endogenous catecholamines are metabolized by monoamine oxidase (MAO)-A and -B, yielding the catecholaldehydes 3,4-dihydroxyphenylacetaldehyde (DOPAL) from dopamine (DA) and 3,4-dihydroxyphenylglycolaldehyde (DOPEGAL) from norepinephrine (NE) and epinephrine (EPI). Based on measurements of DOPAL and DOPEGAL production, DA is a better substrate than NE or EPI for both MAO isoforms, and MAO-A is more efficient than MAO-B in metabolizing DA, NE, and EPI. MAO-A is the main route of intraneuronal metabolism of endogenous catecholamines.


Assuntos
Catecolaminas/metabolismo , Inibidores da Monoaminoxidase/metabolismo , Monoaminoxidase/metabolismo , Dopamina/metabolismo , Epinefrina/metabolismo , Norepinefrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...